Mindfulness Meditation Training and Executive Control Network Resting State Functional Connectivity: A Randomized Controlled Trial.



Mindfulness meditation training has been previously shown to enhance behavioral measures of executive control (e.g., attention, working memory, cognitive control), but the neural mechanisms underlying these improvements are largely unknown. Here, we test whether mindfulness training interventions foster executive control by strengthening functional connections between dorsolateral prefrontal cortex (dlPFC)-a hub of the executive control network-and frontoparietal regions that coordinate executive function.


Thirty-five adults with elevated levels of psychological distress participated in a 3-day randomized controlled trial of intensive mindfulness meditation or relaxation training. Participants completed a resting state functional magnetic resonance imaging scan before and after the intervention. We tested whether mindfulness meditation training increased resting state functional connectivity (rsFC) between dlPFC and frontoparietal control network regions.


Left dlPFC showed increased connectivity to the right inferior frontal gyrus (T = 3.74), right middle frontal gyrus (MFG) (T = 3.98), right supplementary eye field (T = 4.29), right parietal cortex (T = 4.44), and left middle temporal gyrus (T = 3.97, all p < .05) after mindfulness training relative to the relaxation control. Right dlPFC showed increased connectivity to right MFG (T = 4.97, p < .05).


We report that mindfulness training increases rsFC between dlPFC and dorsal network (superior parietal lobule, supplementary eye field, MFG) and ventral network (right IFG, middle temporal/angular gyrus) regions. These findings extend previous work showing increased functional connectivity among brain regions associated with executive function during active meditation by identifying specific neural circuits in which rsFC is enhanced by a mindfulness intervention in individuals with high levels of psychological distress.


Resting-state functional connectivity in major depressive disorder: A review.

Neurosci Biobehav Rev. 2015 Sep;56:330-44. doi: 10.1016/j.neubiorev.2015.07.014. Epub 2015 Jul 30.

Mulders PC1, van Eijndhoven PF2, Schene AH3, Beckmann CF4, Tendolkar I5.

Major depressive disorder (MDD) affects multiple large-scale functional networks in the brain, which has initiated a large number of studies on resting-state functional connectivity in depression. We review these recent studies using either seed-based correlation or independent component analysis and propose a model that incorporates changes in functional connectivity within current hypotheses of network-dysfunction in MDD. Although findings differ between studies, consistent findings include: (1) increased connectivity within the anterior default mode network, (2) increased connectivity between the salience network and the anterior default mode network, (3) changed connectivity between the anterior and posterior default mode network and (4) decreased connectivity between the posterior default mode network and the central executive network. These findings correspond to the current understanding of depression as a network-based disorder.